SPEC CPU - Multi-Threaded Performance

Moving onto multi-threaded SPEC CPU 2017 results, these are the same workloads as on the single-threaded test (we purposefully avoid Speed variants of the workloads in ST tests). The key to performance here is not only microarchitecture or core count, but the overall power efficiency of the system and the levels of performance we can fit into the thermal envelope of the device we’re testing.

It’s to be noted that among the four chips I put into the graph, the i9-11980HK is the only one at a 45W TDP, while the AMD competition lands in at 35W, and the i7-1185G7 comes at a lower 28W. The test takes several hours of runtime (6 hours for this TGL-H SKU) and is under constant full load, so lower duration boost mechanisms don’t come into play here.

SPECint2017 Rate-N Estimated Scores

Generally as expected, the 8-core TGL-H chip leaves the 4-core TGL-U sibling in the dust, in many cases showcasing well over double the performance. The i9-11980HK also fares extremely well against the AMD competition in workloads which are more DRAM or cache heavy, however falls behind in other workloads which are more core-local and execution throughput bound. Generally that’d be a fair even battle argument between the designs, if it weren’t for the fact that the AMD systems are running at 23% lower TDPs.

SPECfp2017 Rate-N Estimated Scores

In the floating-point multi-threaded suite, we again see a similar competitive scenario where the TGL-H system battles against the best Cezanne and Renoir chips.

What’s rather odd here in the results is 503.bwaves_r and 549.fotonik_r which perform far below the numbers which we were able to measure on the TGL-U system. I think what’s happening here is that we’re hitting DRAM memory-level parallelism limits, with the smaller TGL-U system and its 8x16b LPDDR4 channel memory configuration allowing for more parallel transactions as the 2x64b DDR4 channels on the TGL-H system.

SPEC2017 Rate-N Estimated Total

In terms of the overall performance, the 45W 11980HK actually ends up losing to AMD’s Ryzen 5980HS even with 10W more TDP headroom, at least in the integer suite.

We also had initially run the suite in 65W mode, the results here aren’t very good at all, especially when comparing it to the 45W results. For +40-44% TDP, the i9-11980HK in Intel’s reference laptop only performs +9.4% better. It’s likely here that this is due to the aforementioned heavy thermal throttling the system has to fall to, with long periods of time at 35W state, which pulls down the performance well below the expected figures. I have to be explicit here that these 65W results are not representative of the full real 65W performance capabilities of the 11980HK – just that of this particular thermal solution within this Intel reference design.

SPEC CPU - Single-Threaded Performance CPU Tests: Office and Science
POST A COMMENT

229 Comments

View All Comments

  • Spunjji - Thursday, May 20, 2021 - link

    He measured the power consumption, you pillock. It's right there in the review. Nice work getting your FUD on the front page though, round of applause for gondaft.

    If Tiger Lake H will be better in "the right chassis", Intel really should have thought of that when they supplied this one. As things stand, it's clear that this chassis wasn't causing the CPU to throttle at 45W, so the only way it would perform better is in a chassis that allows for 65W - at which point you'd find AMD's CPUs performing better, too...
    Reply
  • 5j3rul3 - Monday, May 17, 2021 - link

    It's a big step to intel
    M1 and Ryzen 5000 are powerful, Intel need more pros to getting the leading performance
    Reply
  • mode_13h - Monday, May 17, 2021 - link

    This is definitely what Rocket Lake should've been. If they just put this chip in a desktop package, so it could be run with a desktop power budget and cooling, it'd sure be a lot more interesting than it is inside a laptop. Reply
  • Exotica - Monday, May 17, 2021 - link

    Yields may have been the primary concern. Reply
  • mode_13h - Monday, May 17, 2021 - link

    I get why they didn't do it, but it's clear to me this chip really wants to be a desktop CPU. Reply
  • whatthe123 - Monday, May 17, 2021 - link

    it's probably more that they've tweaked their 10nm to hit high boost at the cost of efficiency. I think they increased their gate pitch with "superfin" so you end up with more performance scaling but also more power use. considering how far behind their desktop chips are compared to 7nm chips from AMD they may just be crippling efficiency across the board to get performance parity while their fabs lag behind. they don't seem to have high hopes for 10nm considering their target for market leadership is 2024 with 7nm.

    laptop users generally stick with bursty operations or video games and in both cases raw throughput isn't as much of a concern. average user would probably not notice or even benefit from the high ST burst performance, but anyone planning on using it professionally would probably be better off with cezanne.
    Reply
  • Spunjji - Tuesday, May 18, 2021 - link

    It would certainly be able to stretch its legs better there. It would be interesting to see whether it could handle running those higher boost clocks across more cores with a higher TDP. Guess we'll find out with Alder Lake. Reply
  • Lucky Stripes 99 - Monday, May 17, 2021 - link

    I thought the same. This chip in a mini-STX case with a desktop cooler would make a great portable system. However, if it is having thermal issues with a full-size workstation laptop, it'll likely struggle in the smallest of SFF cases like the NUC. Reply
  • Azix - Monday, May 17, 2021 - link

    the laptop doesn't look that that big. A nuc would have more vertical space for the cooling for example. It would also be easier to throw that heat out. Reply
  • mode_13h - Monday, May 17, 2021 - link

    Uh, the mini-STX NUCs don't really have much space. Everything is packed in pretty tightly. Furthermore, they usually top out at 28 W.

    For Coffee Lake, Intel made a larger system they called a "NUC", but I think they had actual Nvidia graphics cards in them and were bigger than a lot of mini-PCs.
    Reply

Log in

Don't have an account? Sign up now